Evaluation of the spatial linear model, random forest and gradient nearest-neighbour methods for imputing potential productivity and biomass of the Pacific Northwest forests
نویسندگان
چکیده
Increasingly, forest management and conservation plans require spatially explicit information within a management or conservation unit. Forest biomass and potential productivity are critical variables for forest planning and assessment in the Pacific Northwest. Their values are often estimated from ground-measured sample data. For unsampled locations, forest analysts and planners lack forest productivity and biomass values, so values must be predicted. Using simulated data and forest inventory and analysis data collected in Oregon and Washington, we examined the performance of the spatial linear model (SLM), random forest (RF) and gradient nearest neighbour (GNN) for mapping and estimating biomass and potential productivity of Pacific Northwest forests. Simulations of artificial populations and subsamplings of forest biomass and productivity data showed that the SLM had smaller empirical root-mean-squared prediction errors (RMSPE) for a wide variety of data types, with generally less bias and better interval coverage than RFand GNN. These patterns held for both point predictions and for population averages, with the SLM reducing RMSPE by 30.0 and 52.6 per cent over two GNN methods in predicting point estimates for forest biomass and potential productivity.
منابع مشابه
Evaluation Accuracy of Nearest Neighbor Sampling Method in Zagross Forests
Collection of appropriate qualitative and quantitative data is necessary for proper management and planning. Used the suitable inventory methods is necessary and accuracy of sampling methods dependent the inventory net and number of sample point. Nearest neighbor sampling method is a one of distance methods and calculated by three equations (Byth and Riple, 1980; Cotam and Curtis, 1956 and Cota...
متن کاملEvaluation Accuracy of Nearest Neighbor Sampling Method in Zagross Forests
Collection of appropriate qualitative and quantitative data is necessary for proper management and planning. Used the suitable inventory methods is necessary and accuracy of sampling methods dependent the inventory net and number of sample point. Nearest neighbor sampling method is a one of distance methods and calculated by three equations (Byth and Riple, 1980; Cotam and Curtis, 1956 and Cota...
متن کاملEstimation of Density using Plotless Density Estimator Criteria in Arasbaran Forest
Sampling methods have a theoretical basis and should be operational in different forests; therefore selecting an appropriate sampling method is effective for accurate estimation of forest characteristics. The purpose of this study was to estimate the stand density (number per hectare) in Arasbaran forest using a variety of the plotless density estimators of the nearest neighbors sampling me...
متن کاملComparison of Geographically Weighted Regression and Regression Kriging to Estimate the Spatial Distribution of Aboveground Biomass of Zagros Forests
Aboveground biomass (AGB) of forests is an essential component of the global carbon cycle. Mapping above-ground biomass is important for estimating CO2 emissions, and planning and monitoring of forests and ecosystem productivity. Remote sensing provides wide observations to monitor forest coverage, the Landsat 8 mission provides valuable opportunities for quantifying the distribution of above-g...
متن کاملStudy on the effect of forest stand distribution pattern on results of different estimators of the nearest individual distance method
The Nearest Individual Sampling Method is one of the distance sampling methods for estimating density, canopy cover and height of forest stands. Some distance sampling methods have more than one density estimator that may be skewed to the spatial pattern. Unless the stands of the trees under study have a random spatial pattern. Therefore, the purpose of this study was evaluating the effect of s...
متن کامل